Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.393
1.
Chem Commun (Camb) ; 60(36): 4785-4788, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38602157

We show that covalent labelling of sialic acids on live cell surfaces or mucin increases the fluorescence of the fluorescence molecular rotors (FMRs) CCVJ, Cy3 and thioazole orange, enabling wash-free imaging of cell surfaces. Dual labelling with an FMR and an environmentally insensitive dye allows detection of changes that occur, for example, when cross-linking is altered.


Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Polysaccharides/chemistry , Nucleic Acids/chemistry , Nucleic Acids/analysis , Carbocyanines/chemistry , Staining and Labeling/methods , Fluorescence , Quinolines/chemistry , Benzothiazoles/chemistry
2.
Eur J Med Chem ; 271: 116428, 2024 May 05.
Article En | MEDLINE | ID: mdl-38653068

Recent evidence suggests that histone deacetylases (HDACs) are important regulators of autosomal dominant polycystic kidney disease (ADPKD). In the present study, a series of benzothiazole-bearing compounds were designed and synthesized as potential HDAC inhibitors. Given the multiple participation of HDACs in ADPKD cyst progression, we embarked on a targeted screen using HeLa nuclear extracts to identify potent pan-HDAC inhibitors. Compound 26 emerged as the most efficacious candidate. Subsequent pharmacological characterization showed that compound 26 effectively inhibits several HDACs, notably HDAC1, HDAC2, and HDAC6 (IC50 < 150 nM), displaying a particularly high sensitivity towards HDAC6 (IC50 = 11 nM). The selected compound significantly prevented cyst formation and expansion in an in vitro cyst model and was efficacious in reducing cyst growth in both an embryonic kidney cyst model and an in vivo ADPKD mouse model. Our results provided compelling evidence that compound 26 represents a new HDAC inhibitor for the treatment of ADPKD.


Benzothiazoles , Histone Deacetylase Inhibitors , Polycystic Kidney, Autosomal Dominant , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Humans , Animals , Mice , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , HeLa Cells , Histone Deacetylases/metabolism
3.
Bioorg Med Chem Lett ; 105: 129752, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38631541

The misfolding and aggregation of α-Syn play a pivotal role in connecting diverse pathological pathways in Parkinson's disease (PD). Preserving α-Syn proteostasis and functionality by inhibiting its aggregation or disaggregating existing aggregates using suitable inhibitors represents a promising strategy for PD prevention and treatment. In this study, a series of benzothiazole-polyphenol hybrids was designed and synthesized. Three identified compounds exhibited notable inhibitory activities against α-Syn aggregation in vitro, with IC50 values in the low micromolar range. These inhibitors demonstrated sustained inhibitory effects throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation. Moreover, the compounds effectively disintegrated preformed α-Syn oligomers and fibers, potentially by binding to specific domains within the fibers, inducing fibril instability, collapse, and ultimately resulting in smaller-sized aggregates and monomers. These findings offer valuable insights into the therapeutic potential of polyphenol hybrids with 2-conjugated benzothiazole targeting α-Syn aggregation in the treatment of PD.


Benzothiazoles , Polyphenols , Protein Aggregates , alpha-Synuclein , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Benzothiazoles/chemical synthesis , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/metabolism , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/chemical synthesis , Humans , Protein Aggregates/drug effects , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Parkinson Disease/drug therapy , Parkinson Disease/metabolism
4.
Rapid Commun Mass Spectrom ; 38(13): e9751, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38680091

RATIONALE: With the development of matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry (MS) in spatial localisation omics research on small molecules, the detection sensitivity of the matrix must increase. However, the types of matrices suitable for detecting acidic small molecules in (-) MALDI-MS mode are very limited and are either not sensitive enough or difficult to obtain. METHODS: More than 10 commercially available benzimidazole and benzothiazole derivatives were selected as MALDI matrices in negative ion mode. MALDI-MS analysis was performed on 38 acidic small molecules and mouse serum, and the matrix effects were compared with those of the common commercial matrices 9-aminoacridine (9AA), 1,5-naphthalenediamine (DAN) and 3-aminoquinoline (3AQ). Moreover, the proton affinity (PA) of the selected potential matrix was calculated, and the relationships among the compound structure, PA value and matrix effect were discussed. RESULTS: In (-) MALDI-MS mode, a higher PA value generally indicates a better matrix effect. Amino-substituted 2-phenyl-1H-benzo[d]imidazole derivatives had well-defined matrix effects on all analytes and were generally superior to the commonly used matrices 9AA, DAN and 3AQ. Among them, 2-(4-(dimethylamino-phenyl)-1H-benzo[d]imidazole-5-amine (E-4) has the best sensitivity and versatility for detecting different analytes and has the best ability to detect fatty acids in mouse serum; moreover, the limit of detection (LOD) of some analytes can reach as low as ng/L. CONCLUSIONS: Compared to 9AA, DAN and 3AQ, matrix E-4 is more effective at detecting low-molecular-weight acidic compounds in (-) MALDI-MS mode, with higher sensitivity and better versatility. In addition, there is a clear correlation between compound structure, PA and matrix effects, which provides a basis for designing more efficient matrices.


Benzimidazoles , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Benzimidazoles/chemistry , Benzimidazoles/blood , Benzimidazoles/analysis , Animals , Mice , Benzothiazoles/chemistry , Benzothiazoles/blood
5.
Mikrochim Acta ; 191(5): 288, 2024 04 26.
Article En | MEDLINE | ID: mdl-38671226

As a neurodegenerative disorder, Alzheimer's disease (AD) is characterized by cognitive dysfunction and behavioral impairment. Among the various genetic risk factors for AD, apoE4 gene plays a pivotal role in the onset and progression of AD, and detection of apoE4 gene holds significance for prevention and early diagnosis of AD. Herein, dual-signal fluorescence detection of fragments associated with apoE ε4 allele near codon 112 (Tc1) and codon 158 (Tc2) was achieved using DNA tetrahedron nanostructure (DTN). The Förster resonance energy transfer (FRET) process in the DTN was initiated in which the nucleic acid intercalating dye thiazole orange (TO) served as the donor and the cyanine dyes of cyanine3 (Cy3) and cyanine5 (Cy5) at the two vertices of DTN served as the acceptors. In the presence of Tc1 and Tc2, the FRET process between TO and the cyanine dyes was hindered by the enzymatic cleavage reaction, which ensures the dual-signal fluorescence assay of apoE4 gene sites. The limit of detection for Tc1 and Tc2 was estimated to be 0.82 nM and 0.77 nM, respectively, and the whole assay was accomplished within 1 h on a microplate reader. The proposed method thus possesses the advantages of easy operation, short detection time, and high-throughput capability.


Apolipoprotein E4 , Carbocyanines , DNA , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Apolipoprotein E4/genetics , Fluorescence Resonance Energy Transfer/methods , Humans , Fluorescent Dyes/chemistry , DNA/chemistry , DNA/genetics , Carbocyanines/chemistry , Benzothiazoles/chemistry , Nanostructures/chemistry , Quinolines/chemistry , Limit of Detection
6.
Talanta ; 274: 126029, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38599120

Detecting heavy metal pollution, particularly lead ion (Pb2⁺) contamination, is imperative for safeguarding public health. In this study, we introduced an innovative approach by integrating DNAzyme with rolling circle amplification (RCA) to propose an amplification sensing method termed DNAzyme-based dimeric-G-quadruplex (dimer-G4) RCA. This sensing approach allows for precise and high-fidelity Pb2⁺ detection. Strategically, in the presence of Pb2⁺, the DNAzyme undergoes substrate strand (S-DNA) cleavage, liberating its enzyme strand (E-DNA) to prime isothermal amplification. This initiates the RCA process, producing numerous dimer-G-Quadruplexes (dimer-G4) as the signal reporting transducers. Compared to conventional strategies using monomeric G-quadruplex (mono-G4) as the reporting transducers, these dimer-G4 structures exhibit significantly enhanced fluorescence when bound with Thioflavin T (ThT), offering superior target signaling ability for even detection of Pb2⁺ at low concentration. Conversely, in the absence of Pb2⁺, the DNAzyme structure remains intact so that no primers can be produced to cause the RCA initiation. This nucleic acid amplification-based Pb2⁺ detection method combing with the high specificity of DNAzymes for Pb2⁺ recognition ensures highly sensitive detection of Pb2+ with a detection limit of 0.058 nM, providing a robust tool for food safety analysis and environmental monitoring.


DNA, Catalytic , G-Quadruplexes , Lead , Nucleic Acid Amplification Techniques , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , DNA, Catalytic/genetics , Lead/analysis , Lead/chemistry , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Biosensing Techniques/methods , Benzothiazoles/chemistry
7.
Biomed Pharmacother ; 174: 116484, 2024 May.
Article En | MEDLINE | ID: mdl-38565058

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Benzothiazoles , Cholinesterase Inhibitors , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Mice , Male , Humans , Piperazines/pharmacology , Piperazines/chemistry , Scopolamine , Piperazine/pharmacology , Piperazine/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Molecular Dynamics Simulation , Computer Simulation , Disease Models, Animal , Maze Learning/drug effects
8.
Chem Asian J ; 19(9): e202400144, 2024 May 02.
Article En | MEDLINE | ID: mdl-38487959

A short monodisperse poly(ethylene glycol) (PEG) and a neutral organic rotamer conjugate TEG-BTA-2 amphiphile was designed for the construction of a stimuli-responsive switchable self-assembled structure for drug encapsulation by noncovalent interaction and targeted controlled delivery. A short PEG, tetraethylene glycol (TEG) was covalently attached with a neutral organic rotamer benzothiazole dye (BTA-2) affording the neutral TEG-BTA-2 (<500 D). The TEG-BTA-2 is self-assembled into a microsphere in an aqueous medium, but remarkably undergoes morphology change switching to a rice-like microcapsule for curcumin encapsulation. Curcumin-loaded microcapsules were stable in an aqueous solution, however, were noticed disintegrating upon the addition of BSA protein. This is possibly due to an interaction with BSA protein leading to a protein affinity-controlled curcumin release in a neutral PBS buffer. Moreover, cell internalization of the neutral amphiphile TEG-BTA-2 into A549 cells was observed by fluorescence microscopy, providing an opportunity for application as a molecular vehicle for targeted drug delivery and monitoring.


Capsules , Curcumin , Polyethylene Glycols , Serum Albumin, Bovine , Humans , Curcumin/chemistry , Curcumin/pharmacology , Polyethylene Glycols/chemistry , Serum Albumin, Bovine/chemistry , A549 Cells , Capsules/chemistry , Drug Liberation , Delayed-Action Preparations/chemistry , Benzothiazoles/chemistry , Drug Carriers/chemistry , Animals , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Cattle
9.
Bioorg Med Chem ; 101: 117638, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38394996

As a result of our continued efforts to pursue Gal-3 inhibitors that could be used to fully evaluate the potential of Gal-3 as a therapeutic target, two novel series of benzothiazole derived monosaccharides as potent (against both human and mouse Gal-3) and orally bioavailable Gal-3 inhibitors, represented by 4 and 5, respectively, were identified. These discoveries were made based on proposals that the benzothiazole sulfur atom could interact with the carbonyl oxygen of G182/G196 in h/mGal-3, and that the anomeric triazole moiety could be modified into an N-methyl carboxamide functionality. The interaction between the benzothiazole sulfur and the carbonyl oxygen of G196 in mGal-3 was confirmed by an X-ray co-crystal structure of early lead 9, providing a rare example of using a S···O binding interaction for drug design. It was found that for both the series, methylation of 3-OH in the monosaccharides caused no loss in h & mGal-3 potencies but significantly improved permeability of the molecules.


Galectin 3 , Monosaccharides , Animals , Humans , Mice , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Drug Design , Galectin 3/antagonists & inhibitors , Galectins/antagonists & inhibitors , Monosaccharides/chemistry , Monosaccharides/pharmacology , Oxygen , Sulfur
10.
Arch Pharm (Weinheim) ; 357(5): e2300557, 2024 May.
Article En | MEDLINE | ID: mdl-38321839

A series of sulfonyl thioureas 6a-q containing a benzo[d]thiazole ring with an ester functional group was synthesized from corresponding substituted 2-aminobenzo[d]thiazoles 3a-q and p-toluenesulfonyl isothiocyanate. They had remarkable inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO)-A, and MAO-B. Among thioureas, several compounds had notable activity in the order of 6k > 6 h > 6c (AChE), 6j > 6g > 6k (BChE), 6k > 6g > 6f (MAO-A), and 6i > 6k > 6h (MAO-B). Compound 6k was an inhibitor of interest due to its potent or good activity against all studied enzymes, with IC50 values of 0.027 ± 0.008 µM (AChE), 0.043 ± 0.004 µM (BChE), 0.353 ± 0.01 µM (MAO-A), and 0.716 ± 0.02 µM (MAO-B). This inhibitory capacity was comparable to that of the reference drugs for each enzyme. Kinetic studies of two compounds with potential activity, 6k (against AChE) and 6j (against BChE), had shown that both 6k and 6j followed competitive-type enzyme inhibition, with Ki constants of 24.49 and 12.16 nM, respectively. Induced fit docking studies for enzymes 4EY7, 7BO4, 2BXR, and 2BYB showed active interactions between sulfonyl thioureas of benzo[d]thiazoles and the residues in the active pocket with ligands 6k, 6i, and 6j, respectively. The stability of the ligand-protein complexes while each ligand entered the active site of each enzyme (4EY7, 7BO4, 2BXR, or 2BYB) was confirmed by molecular dynamics simulations.


Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/metabolism , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Structure-Activity Relationship , Molecular Structure , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Dose-Response Relationship, Drug , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/chemical synthesis
11.
Anal Chem ; 96(5): 2158-2164, 2024 02 06.
Article En | MEDLINE | ID: mdl-38269442

Ordered protein aggregates, amyloid fibrils, form toxic plaques in the human body in amyloidosis and neurodegenerative diseases and provide adaptive benefits to pathogens and to reduce the nutritional value of legumes. To identify the amyloidogenic properties of proteins and study the processes of amyloid fibril formation and degradation, the cationic dye thioflavin T (ThT) is the most commonly used. However, its use in acidic environments that induce amyloid formation in vitro can sometimes lead to misinterpretation of experimental results due to electrostatic repulsion. In this work, we show that calculating the net charge per residue of amyloidogenic proteins or peptides is a simple and effective approach for predicting whether their fibrils will interact with ThT at acidic pH. In particular, it was shown that at pH 2, proteins and peptides with a net charge per residue > +0.18 are virtually unstained by this fluorescent probe. The applicability of the proposed approach was demonstrated by predicting and experimentally confirming the absence of ThT interaction with amyloids formed from green fluorescent (sfGFP) and odorant-binding (bOBP) proteins, whose fibrillogenesis was first carried out in an acidic environment. Correct experimental evidence that the inability to detect these fibrils under acidic conditions is precisely because of the lack of dye binding to amyloids (and not their specific structure or the low fluorescence quantum yield of the bound dye) and that the number of ThT molecules associated with fibrils increases with decreasing acidity of the medium was obtained by using the equilibrium microdialysis approach.


Amyloid , Benzothiazoles , Humans , Amyloid/chemistry , Feasibility Studies , Protein Binding , Benzothiazoles/chemistry , Fluorescent Dyes/chemistry , Peptides/metabolism , Amyloidogenic Proteins/metabolism
12.
Fundam Clin Pharmacol ; 38(3): 410-464, 2024 Jun.
Article En | MEDLINE | ID: mdl-38146774

BACKGROUND: Benzothiazole derivatives have been reported to possess a wide range of biological activities, including antimalarial activity. This systematic review aims to summarize and evaluate the antimalarial activities of benzothiazole analogs. METHODS: We conducted an electronic search using nine databases in October 2017 and subsequently updated in September 2022. We included all original in vitro and in vivo studies that documented the antimalarial activities of compounds containing benzothiazole analogs with no restriction. The risk of bias of each included study was assessed by ToxRTool. RESULTS: Twenty-eight articles were included in our study, which are in vitro, in vivo, or both. Of these, 232 substances were identified to have potent antiplasmodial activity against various strains of the malaria parasite. Benzothiazole analogs show different antimalarial mechanisms, including inhibition of Plasmodium falciparum enzymes in in vitro studies and inhibition of blood parasites in in vivo studies. CONCLUSIONS: Benzothiazole derivatives are promising substances for treating malaria. The structure-activity relationship studies suggest that the substitution pattern of the benzothiazole scaffold plays a crucial role in determining the antimalarial activity of the analog.


Antimalarials , Benzothiazoles , Plasmodium falciparum , Antimalarials/pharmacology , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Plasmodium falciparum/drug effects , Humans , Structure-Activity Relationship , Animals , Malaria/drug therapy
13.
Bioorg Med Chem Lett ; 97: 129542, 2024 01 01.
Article En | MEDLINE | ID: mdl-37939861

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a clinically validated target on the treatment of cardiovascular disease (CVD). PCSK9 can regulate the hepatocyte surface low density lipoprotein receptor (LDLR) level by binding to LDLR and leading to their degradation in the lysosome. The clinical use of two monoclonal antibodies (alirocumab and evolocumab, approved in 2015) and one small interfering RNA (inclisiran, approved in 2020) which can inhibit PCSK9 function proved that they are very effective in lowering low density lipoprotein cholesterol (LDL-C). However, the high treatment costs and parenteral administration of these drugs prohibited widespread use and reduced their long-term advantage. Comparatively, small molecule drugs have many incomparable advantages of macromolecules, such as lower treatment cost, more drug administration options, superior pharmacokinetic properties, less adverse immunogenic responses and better affordable production. In this paper, we identified a series of benzothiazoles small molecule PCSK9 inhibitors through extensive screening. The structure and activity relationship (SAR) was summarized to facilitate further optimization. Moreover, the primary mechanism of action of the most potent compound was also investigated.


Anticholesteremic Agents , Benzothiazoles , PCSK9 Inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL , Proprotein Convertase 9/metabolism , Benzothiazoles/chemistry , Benzothiazoles/pharmacology
14.
Environ Pollut ; 343: 123193, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38142810

Hydrazine (N2H4), a chemical compound widely used in various industrial applications, causes significant environmental and biological hazards. Therefore, it is crucial to develop methodologies for the visualization and real time tracking of N2H4. In this regard, we have constructed a novel near-infrared fluorescent probe (HBT-Cy) that can effectively detect N2H4 in various samples. HBT-Cy contains 2-(2'-hydroxyphenyl)benzothiazole (HBT), cinnamoyl (Cy), and pyridinium (Py) moieties. Importantly, HBT-Cy exhibits a rapid, selective, and highly sensitive response to N2H4. This response results in the release of HBT-Py and the generation of considerable colorimetric changes along with a significant NIR (near infrared) fluorescence signal, peaking at 685 nm. Advantages of this system include turn on NIR fluorescence with large Stokes shift, (approximately 171 nm), low limit of detection (LOD = 0.11 µM) and quantum yield (0.211). The probe with low cytotoxic behavior demonstrates strong NIR fluorescence imaging capabilities to visualize endogenous and exogenous N2H4 in live cells. This mitochondria-targetable probe shows effective subcellular localization. These results suggest that HBT-Cy is a valuable probe for tracking and investigating the behavior of N2H4 in biological systems and environmental samples.


Benzothiazoles , Fluorescent Dyes , Humans , HeLa Cells , Benzothiazoles/chemistry , Fluorescence , Hydrazines , Spectrometry, Fluorescence
15.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article En | MEDLINE | ID: mdl-37958620

Currently, nanopore-based technology for the determination of the functional activity of single enzyme molecules continues its development. The use of natural nanopores for studying single enzyme molecules is known. At that, the approach utilizing artificial solid-state nanopores is also promising but still understudied. Herein, we demonstrate the use of a nanotechnology-based approach for the investigation of the enzymatic activity of a single molecule of horseradish peroxidase with a solid-state nanopore. The artificial 5 nm solid-state nanopore has been formed in a 40 nm thick silicon nitride structure. A single molecule of HRP has been entrapped into the nanopore. The activity of the horseradish peroxidase (HRP) enzyme molecule inserted in the nanopore has been monitored by recording the time dependence of the ion current through the nanopore in the course of the reaction of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation reaction. We have found that in the process of ABTS oxidation in the presence of 2.5 mM hydrogen peroxide, individual HRP enzyme molecules are able to retain activity for approximately 700 s before a decrease in the ion current through the nanopore, which can be explained by structural changes of the enzyme.


Nanopores , Horseradish Peroxidase/chemistry , Sulfonic Acids/chemistry , Benzothiazoles/chemistry , Macromolecular Substances
16.
Molecules ; 28(14)2023 Jul 14.
Article En | MEDLINE | ID: mdl-37513284

2-benzothiazoles and 2-(aminophenyl)benzothiazoles represent biologically interesting heterocycles with high pharmacological activity. The combination of these heterocycles with amino acids and peptides is of special interest, as such structures combine the advantages of amino acids and peptides with the advantages of the 2-benzothiazolyl and 2-(aminophenyl)benzothiazolyl pharmacophore group. In this work, we developed an easy and efficient method for the solid-phase synthesis of 2-benzothiazolyl (BTH) and 2-(aminophenyl)benzothiazolyl (AP-BTH) C-terminal modified amino acids and peptides with high chiral purity.


Amino Acids , Solid-Phase Synthesis Techniques , Amino Acids/chemistry , Amines/chemistry , Benzothiazoles/chemistry , Peptides
17.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article En | MEDLINE | ID: mdl-37445983

Benzoxazole and benzothiazole have a broad spectrum of agricultural biological activities, such as antibacterial, antiviral, and herbicidal activities, which are important fused heterocyclic scaffold structures in agrochemical discovery. In recent years, great progress has been made in the research of benzoxazoles and benzothiazoles, especially in the development of herbicides and insecticides. With the widespread use of benzoxazoles and benzothiazoles, there may be more new products containing benzoxazoles and benzothiazoles in the future. We systematically reviewed the application of benzoxazoles and benzothiazoles in discovering new agrochemicals in the past two decades and summarized the antibacterial, fungicidal, antiviral, herbicidal, and insecticidal activities of the active compounds. We also discussed the structural-activity relationship and mechanism of the active compounds. This work aims to provide inspiration and ideas for the discovery of new agrochemicals based on benzoxazole and benzothiazole.


Agrochemicals , Benzoxazoles , Benzoxazoles/pharmacology , Benzoxazoles/chemistry , Benzothiazoles/chemistry , Anti-Bacterial Agents , Structure-Activity Relationship
18.
Int J Mol Sci ; 24(11)2023 May 30.
Article En | MEDLINE | ID: mdl-37298442

(Thio)ureas ((T)Us) and benzothiazoles (BTs) each have demonstrated to have a great variety of biological activities. When these groups come together, the 2-(thio)ureabenzothizoles [(T)UBTs] are formed, improving the physicochemical as well as the biological properties, making these compounds very interesting in medicinal chemistry. Frentizole, bentaluron and methabenzthiazuron are examples of UBTs used for treatment of rheumatoid arthritis and as wood preservatives and herbicides in winter corn crops, respectively. With this antecedent, we recently reported a bibliographic review about the synthesis of this class of compounds, from the reaction of substituted 2-aminobenzothiazoles (ABTs) with iso(thio)cyanates, (thio)phosgenes, (thio)carbamoyl chlorides, 1,1'-(thio)carbonyldiimidazoles, and carbon disulfide. Herein, we prepared a bibliographic review about those features of design, chemical synthesis, and biological activities relating to (T)UBTs as potential therapeutic agents. This review is about synthetic methodologies generated from 1968 to the present day, highlighting the focus to transform (T)UBTs to compounds containing a range substituents, as illustrated with 37 schemes and 11 figures and concluded with 148 references. In this topic, the scientists dedicated to medicinal chemistry and pharmaceutical industry will find useful information for the design and synthesis of this interesting group of compounds with the aim of repurposing these compounds.


Benzothiazoles , Urea , Benzothiazoles/chemistry , Cyanates
19.
ChemMedChem ; 18(18): e202300261, 2023 09 15.
Article En | MEDLINE | ID: mdl-37376962

Novel benzo[b]thienyl- and 2,2'-bithienyl-derived benzothiazoles and benzimidazoles were synthesized to study their antiproliferative and antitrypanosomal activities in vitro. Specifically, we assessed the impact that amidine group substitutions and the type of thiophene backbone have on biological activity. In general, the benzothiazole derivatives were more active than their benzimidazole analogs as both antiproliferative and antitrypanosomal agents. The 2,2'-bithienyl-substituted benzothiazoles with unsubstituted and 2-imidazolinyl amidine showed the most potent antitrypanosomal activity, and the greatest selectivity was observed for the benzimidazole derivatives bearing isopropyl, unsubstituted and 2-imidazolinyl amidine. The 2,2'-bithiophene derivatives showed most selective antiproliferative activity. Whereas the all 2,2'-bithienyl-substituted benzothiazoles were selectively active against lung carcinoma, the benzimidazoles were selective against cervical carcinoma cells. The compounds with an unsubstituted amidine group also produced strong antiproliferative effects. The more pronounced antiproliferative activity of the benzothiazole derivatives was attributed to different cytotoxicity mechanisms. Cell cycle analysis, and DNA binding experiments provide evidence that the benzimidazoles target DNA, whereas the benzothiazoles have a different cellular target because they are localized in the cytoplasm and do not interact with DNA.


Antineoplastic Agents , Carcinoma , Humans , Antineoplastic Agents/chemistry , Cell Line, Tumor , Benzothiazoles/chemistry , DNA/metabolism , Benzimidazoles/chemistry , Amidines/pharmacology , Amidines/chemistry , Structure-Activity Relationship , Cell Proliferation
20.
Chemphyschem ; 24(17): e202300159, 2023 09 01.
Article En | MEDLINE | ID: mdl-37349282

Fluorescence imaging is conducive to establish a bridge between molecular biology and clinical medicine, and provides new tools for disease process research, early diagnosis, and efficacy evaluation, because of the advantages of rapid imaging and nondestructive detection. Herein, a series of fluorescent molecules with thiadiazole, or thiazole, or benzothiazole cores were designed and synthesized to develop more excellent fluorescent molecules in bio-imaging. According to theoretical and experimental methods, we found that benzothiazole derivative 14 B with conjugate expansion by (4-aminophenyl) ethynyl group was the most excellent fluorescent molecule among all the investigated compounds and exhibited low cytotoxicity and strong blue and green fluorescence by confocal cell imaging.


Benzothiazoles , Thiadiazoles , Benzothiazoles/chemistry , Coloring Agents , Fluorescence , Fluorescent Dyes/chemistry
...